Short Problems:

A) a) Yes, since the spring force is all internal to the system. Hence, net external force in the horizontal direction is zero.
[LO 48.1]
b) Yes, spring force is a conservative force. In this process, the potential energy stored in the spring is converted to the kinetic energies of the two blocks.
[LO50.1]
c) $K_{A}=3 K_{B}$
[LO 48.2, 34.1, 3.1]
B) a) $(1 / 12) \mathrm{M}\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)+(1 / 4) \mathrm{Ma}^{2}$
[LO 51.1,52.1]
b) $(1 / 12) \mathrm{M}\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)+(1 / 4) \mathrm{Mb}^{2}$
[LO 51.2,52.2]
c) $(1 / 3) \mathrm{M}\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)$
[LO 51.3,52.3]
C) a) $\omega=L / I=\tau t / I=F_{\text {tan }} R t / I$
[LO 54.1,55.1,3.2,14.1]
b) $\theta=1 / 2 \alpha t^{2}=F_{\tan R t^{2} / 2 I}$
[LO 14.2]
c) $\mathrm{W}=\tau \Delta \theta=\left(\mathrm{F}_{\tan } \mathrm{Rt}\right)^{2} / 2 \mathrm{I}$
[LO 56.1]
D) Coordinate system drawn
[LO 9.1]
Free body diagram
[LO 23.1, 26.1]
$\tan (\theta)=a / b$
[LO 45.1, 3.3]

Long Problems:

Problem 1

a) Inelastic, since they stick to each other
[LO 50.2]
b) $\mathrm{P}_{\text {car }}=30,000 \mathrm{~kg} * \mathrm{~m} / \mathrm{s}$ in the x -direction
[LO 46.1,10.1]
$P_{\text {truck }}=40,000 \mathrm{~kg} * \mathrm{~m} / \mathrm{s}$ in the y -direction
[LO 46.2,10.2]
c) $\mathbf{P}_{\mathrm{f}}=50,000 \mathrm{~kg}{ }^{*} \mathrm{~m} / \mathrm{s}$ at angle 51.3 degrees counterclockwise from $+x$
[LO 46.3,48.3,3.4, 2.1]
d) Impulse $=50,000 \mathrm{~kg}^{*} \mathrm{~m} / \mathrm{s}$. It is an inelastic collision
[LO 49.1, 50.3]
e) Magnitude of average force $=500,000 \mathrm{~N}$
[LO 49.2]

Problem 2

a) $\mathrm{M}_{\mathrm{A}} \mathrm{gh}+0+0=\mathrm{M}_{\mathrm{B}} \mathrm{gh}+(1 / 2)\left[\mathrm{M}_{\mathrm{A}} \mathrm{V}^{2}+\mathrm{M}_{\mathrm{B}} \mathrm{v}^{2}+\left(\mathrm{mR}^{2} / 2\right) \omega^{2}\right]$
[LO 38.1,34.2,35.1,51.4,16.1]
$=M_{B} g h+(1 / 2)\left[M_{A} v^{2}+M_{B} v^{2}+\left(m R^{2} / 2\right)(v / R)^{2}\right]=M_{B} g h+(1 / 2)\left[M_{A} v^{2}+M_{B} v^{2}+m / 2\right] v^{2}$
$\mathrm{v}=1 \mathrm{~m} / \mathrm{s}$
b) $\mathrm{a}=1 \mathrm{~m} / \mathrm{s}^{2}, a=5 \mathrm{rad} / \mathrm{s}^{2}$
[LO 14.3,16.2]
c) $\Delta \theta=2.5 \mathrm{rad}$
d) $\tau_{\mathrm{A}}=9.0 \mathrm{Nm}$ clockwise, $\mathrm{W}_{\mathrm{A}}=+22.5 \mathrm{Nm}$

Problem 3

a) The forces at the hinge don't produce any net torque, neither does the gravitation force at the center of gravity. Net external torque is zero, hence angular momentum is conserved. [LO 59.1]
b) Before $\quad \mathrm{L}_{\mathrm{i}}=\mathrm{mv}_{0}(1.00-0.50)=1 \mathrm{kgm}^{2} / \mathrm{s}$ After $\quad \mathrm{L}_{\mathrm{f}}=\mathrm{I} \omega=\left(\mathrm{ML}^{2} / 3\right) \omega=\left(0.5 \mathrm{kgm}^{2}\right) \omega$
c) $\mathrm{L}_{\mathrm{i}}=\mathrm{L}_{\mathrm{f}} \boldsymbol{\omega}=\left(1 \mathrm{kgm}^{2} / \mathrm{s}\right) /\left(0.50 \mathrm{kgm}^{2}\right)=2 \mathrm{rad} / \mathrm{s}$
d) $\operatorname{Mg}(/ / 2)+(1 / 2)!\omega^{2}=(1 / 2)!\omega_{f}^{2}$
[LO 38.2,45.2,35.2,35.3]

$$
\begin{equation*}
\left(\mathrm{I}=\mathrm{M} \mathrm{I}^{2} / 3=0.5 \mathrm{kgm}^{2}\right) \tag{LO51.6}
\end{equation*}
$$

$$
\omega_{\mathrm{f}}{ }^{2}=\left[\mathrm{Mg} /+\mid \omega^{2}\right] / / ; \quad \omega_{\mathrm{f}}=\sqrt{34} \mathrm{rad} / \mathrm{s}
$$

