PHYS 206: Exam 3 – Spring 2019

Short Problems:

A)	a) Yes, since the spring force is all internal to the system. Hence, no horizontal direction is zero. b) Yes, spring force is a conservative force. In this process, the pote spring is converted to the kinetic energies of the two blocks. c) $K_A=3K_B$	[LO 48.1]
B)	a) $(1/12)M(a^2 + b^2) + (1/4)Ma^2$ b) $(1/12)M(a^2 + b^2) + (1/4)Mb^2$ c) $(1/3)M(a^2 + b^2)$	[LO 51.1,52.1] [LO 51.2,52.2] [LO 51.3,52.3]
C)	a) $\omega = L/I = \tau t/I = F_{tan}Rt/I$ b) $\theta = \frac{1}{2} \alpha t^2 = F_{tan}Rt^2/2I$ c) $W = \tau \Delta \theta = (F_{tan}Rt)^2/2I$	[LO 54.1,55.1,3.2,14.1] [LO 14.2] [LO 56.1]
D)	Coordinate system drawn Free body diagram	[LO 9.1] [LO 23.1, 26.1]

[LO 45.1, 3.3]

Long Problems:

 $tan(\theta) = a/b$

Problem 1

a) Inelastic, since they stick to each other	[LO 50.2]
b) $P_{car} = 30,000 \text{ kg*m/s}$ in the x-direction	[LO 46.1,10.1]
P _{truck} = 40,000 kg*m/s in the y-direction	[LO 46.2,10.2]
c) $P_f = 50,000 \text{ kg*m/s}$ at angle 51.3 degrees counterclockwise from +x	[LO 46.3,48.3,3.4, 2.1]
d) Impulse = 50,000 kg*m/s. It is an inelastic collision	[LO 49.1, 50.3]
e) Magnitude of average force = 500,000 N	[LO 49.2]

Problem 2

a) $M_Agh + 0 + 0 = M_Bgh + (1/2)[M_Av^2 + M_Bv^2 + (mR^2/2)\omega^2]$	[LO 38.1,34.2,35.1,51.4,16.1]		
= $M_Bgh + (1/2)[M_Av^2 + M_Bv^2 + (mR^2/2)(v/R)^2] = M_Bgh + (1/2)[M_Av^2 + M_Bv^2 + m/2]v^2$			
v = 1 m/s	[LO3.5]		
b) $a = 1 \text{ m/s}^2$, $a = 5 \text{ rad/s}^2$	[LO 14.3,16.2]		
c) $\Delta\theta$ = 2.5 rad	[LO 16.3]		
d) $\tau_A = 9.0$ Nm clockwise, $W_A = +22.5$ Nm	[LO 21.1,24.1,54.2,56.2]		

Problem 3

a) The forces at the hinge don't produce any net torque, neither does the gravitation force at the center of gravity. Net external torque is zero, hence angular momentum is conserved. [LO 59.1]

b) Before
$$L_i = mv_0(1.00 - 0.50) = 1 \text{ kgm}^2/\text{s}$$
 [LO 57.1]

After
$$L_f = I\omega = (ML^2/3)\omega = (0.5 \text{ kgm}^2) \omega$$
 [LO 57.2,51.5]

c)
$$L_i = L_{f;\omega} = (1 \text{ kgm}^2/\text{s})/(0.50 \text{ kgm}^2) = 2 \text{ rad/s}$$
 [LO 59.2,3.6]

d)
$$Mg(I/2) + (1/2)I\omega^2 = (1/2)I\omega_f^2$$
 [LO 38.2,45.2,35.2,35.3]

$$(I = Ml^2/3 = 0.5 \text{ kgm}^2)$$
 [LO 51.6]

$$\omega_{\rm f}^2 = [{\rm Mg}/ + {\rm I}\omega^2]/I; \qquad \omega_{\rm f} = \sqrt{34} \ {\rm rad/s}$$
 [LO 3.7]