PHYS 206 - Spring 2019 - Exam II

All University Physics Sections

a) $\vec{a} = 3 \text{ m/s}^2$ to the right Problem 1:

[LO 21.1]

[LO 23.1, 24.1, 26.1]

[LO 21.2, 24.2]

c) $T_{AB} = 150 \text{ N}$ d) $T_{BC} = 90 \text{ N}$

[LO 21.3, 24.3]

e) $T_{AF} = -180 \text{ N}$

[LO 22.1]

Problem 2:

[LO 23.2, 26.2]

b) $\vec{F} = 0.04 \text{ N downwards}$

[LO 3.1, 10.1, 10.2, 14.1, 21.4, 22.2]

c) $h_{\text{max}} = 0.8 \text{ m}$

[LO 3.2, 34.1, 38.1, 40.1]

Problem 3:

a) In the $+\hat{i}$ direction (right)

[LO 44.1]

b) In the $-\hat{i}$ direction (left)

[LO 44.2]

c) There is no force

[LO 44.3]

d) x = +3 m

[LO 34.2, 40.2, 41.1]

e) x = 3 m and x = 6 m

[LO 41.2, 42.1]

f) x = 5 m

[LO 41.3, 42.2]

g) $x_{\text{max}} = 7 \text{ m}$ if it started from A, 4 m if from B, and 6 m if from D

[LO 42.3, 43.1, 43.2, 43.3]

Problem 4:

[LO 23.3, 26.3, 28.1]

b) $\vec{a} = -5\hat{i} \text{ m/s}^2$ (in negative x-direction)

[LO 3.3, 13.1, 21.5, 28.2]

c) i) $v_0 = 30 \text{ m/s}$

[LO 3.4, 10.3]

ii) $v_0 = 30 \text{ m/s}$

[LO 14.2, 32.1, 34.3, 39.1]

d) No, the driver was speeding

[LO 6.1]

Problem 5:

[LO 23.4, 26.4, 28.3]

b) $W_{\text{grav}} = mgd\sin\theta$

[LO 32.2, 32.5]

c) $W_{\text{friction}} = -\mu_k mgd\cos\theta$

[LO 28.4, 32.3]

d) $v = \sqrt{2gd(\sin\theta - \mu_k\cos\theta)}$

[LO 3.5, 34.4, 39.2]

e) $x = \sqrt{\frac{2mgd}{k} \left(\sin \theta - \mu_k \cos \theta \right)}$

[LO 3.6, 32.4, 38.3, 40.3]

Problem 6:

- a) $K_B = mgR$ and $\vec{n}_B = -mg\hat{j}$ (downwards) [LO 18.1, 23.5, 26.5, 34.5, 38.4, 40.4]

- b) $K_D = 3mgR$ and $\vec{n}_D = 7mg\,\hat{j}$ (upwards) [LO 18.2, 23.6, 26.6, 34.6, 38.5, 40.5]

- c) $K_D = 2mgR$ and $\vec{n}_D = 4mg\,\hat{i}$ (to the right) [LO 18.3, 23.7, 26.7, 34.7, 38.6, 40.6]

- d) $n_{\text{car},C} = -4mg\,\hat{i}$ (to the left)

[LO 22.3]

e) $\vec{a} = (4\hat{i} - \hat{j})g$,

- [LO 13.2, 17.1, 18.4, 21.6]
- or $a_x = 4g$ to the right and $a_y = g$ down
- [LO 6.2, 18.5, 21.7, 38.7, 40.7]

f) $h = \frac{5}{2}R$