Phys 218 – Spring 2018

All University Physics Sections

Exam I

Short Answer:

A) They will have the same speed. From $v_f^2 = v_0^2 + 2a\Delta y$, v_0^2 (as well as a and Δy) are the same in both cases, so v_f^2 will be as well.

[LO 13.1, 14.1, 15.1]

[LO 9.1]

B) a) North

b)
$$x = \frac{1}{3}$$
 [LO 2.1, 3.1, 6.1]

c)
$$x = \pm 3$$
 [LO 2.2]
d) Since both \hat{j} components are negative, but the \hat{i} compo-

d) Since both \hat{j} components are negative, but the \hat{i} components are opposite signs between Alice and Bob, there is no value of x which will make them anti-parallel.

b)
$$B$$
 [LO 12.2]

c) The slope is negative at point
$$C$$
, so $v = \frac{dx}{dt}$ is negative [LO 13.2]

[LO 13.3, 13.4, 17.1, 17.2, 18.1, 18.2]

Problem 1: (a) $\langle v \rangle = 10 \text{ m/s}$

(a)
$$\langle v \rangle = 10 \text{ m/s}$$
 [LO 10.1, 10.2, 11.1, 16.1]
(b) $\langle \vec{v} \rangle = 0$ [LO 11.2, 16.2]

(c)
$$a_{\rm rad} = \frac{\pi}{300} \text{ m/s}^2$$
 [LO 10.3, 18.3]

(d)
$$a_{tan} = 0$$
 [LO 17.3]

(e)
$$N = 6$$
 cycles [LO 10.4, 16.3]

Problem 2: (a) $\theta = 45^{\circ}$

[LO 1.1, 3.2, 6.2, 9.2, 20.1]

(b)
$$\vec{v}_{E/A} = -\vec{v}_{A/E} = 10$$
 m/s due east

[LO 20.2]

(c)
$$t = 1 \text{ hr}$$

[LO 1.2, 10.5, 11.3]

Problem 3: (a) $\vec{r}(t=1 \text{ s}) = (\hat{i} + 3\hat{j}) \text{ m}$

[LO 12.3]

(b)
$$\vec{v}(t=1 s) = 3\hat{i} m/s$$

[LO 8.1, 12.4]

(c)
$$\vec{a}(t=1 \text{ s}) = 6(\hat{i} - \hat{j}) \text{ m/s}^2$$
; No

 $[\mathrm{LO}\ 8.2,\ 12.5,\ 15.2]$

(d) Since $\vec{v}(t=1\,\mathrm{s})$ is along $+\hat{i}$ and $\vec{a}(t=1\,\mathrm{s})$ also has a positive \hat{i} component, the bird is speeding up.

[LO 13.5, 17.4]

(e) The other component of \vec{a} is along $-\hat{j}$, so to the right of the $+\hat{i}$ direction of motion. The bird is turning right.

[LO 13.6, 18.4]

(f)
$$\vec{a}(t) = -\frac{3 \text{ m}}{t^2}\hat{i} + \left(\frac{t^6}{s^6}\right) \left(35 \text{ m/s}^2\right)\hat{j}$$

[LO 8.3]

Problem 4: (a) $(v_0)_{\min} = D\sqrt{g/H}$

[LO 1.3, 1.4, 3.3, 3.4, 6.3, 6.4, 9.3, 14.2, 14.3, 15.3]

(b)
$$t = \sqrt{2H/g}$$

[LO 3.5, 6.5, 14.4]

(c)
$$d = (\sqrt{2} - 1) D$$

[LO 1.5, 14.5]