Phys 218 - Spring 2018
 All University Physics Sections

Exam I

Short Answer: A) They will have the same speed. From $v_{f}^{2}=v_{0}^{2}+2 a \Delta y, \quad$ [LO 13.1, 14.1, 15.1] v_{0}^{2} (as well as a and Δy) are the same in both cases, so v_{f}^{2} will be as well.
B) a)

b) $x=\frac{1}{3}$
[LO 2.1, 3.1, 6.1]
c) $x= \pm 3$
[LO 2.2]
d) Since both \hat{j} components are negative, but the \hat{i} components are opposite signs between Alice and Bob, there is no value of x which will make them anti-parallel.
C) a) C
[LO 12.1]
b) B
[LO 12.2]
c) The slope is negative at point C, so $v=\frac{d x}{d t}$ is negative
[LO 13.2]
D)

[LO 13.3, 13.4, 17.1,
17.2, 18.1, 18.2]

Problem 1: (a) $\langle v\rangle=10 \mathrm{~m} / \mathrm{s}$
[LO 10.1, 10.2, 11.1, 16.1]
(b) $\langle\vec{v}\rangle=0$
(c) $a_{\mathrm{rad}}=\frac{\pi}{300} \mathrm{~m} / \mathrm{s}^{2}$
[LO 11.2, 16.2]
[LO 10.3, 18.3]
(d) $a_{\tan }=0$
(e) $N=6$ cycles
[LO 17.3]
[LO 10.4, 16.3]

Problem 2: (a) $\theta=45^{\circ}$

(b) $\vec{v}_{E / A}=-\vec{v}_{A / E}=10 \mathrm{~m} / \mathrm{s}$ due east
[LO 20.2]
(c) $t=1 \mathrm{hr}$
[LO 1.2, 10.5, 11.3]

Problem 3: (a) $\vec{r}(t=1 \mathrm{~s})=(\hat{i}+3 \hat{j}) \mathrm{m}$
(b) $\vec{v}(t=1 \mathrm{~s})=3 \hat{i} \mathrm{~m} / \mathrm{s}$
[LO 12.3]
[LO 8.1, 12.4]
(c) $\vec{a}(t=1 \mathrm{~s})=6(\hat{i}-\hat{j}) \mathrm{m} / \mathrm{s}^{2}$; No
(d) Since $\vec{v}(t=1 \mathrm{~s})$ is along $+\hat{i}$ and $\vec{a}(t=1 \mathrm{~s})$ also has a [LO 8.2, 12.5, 15.2] positive \hat{i} component, the bird is speeding up.
(e) The other component of \vec{a} is along $-\hat{j}$, so to the right of the $+\hat{i}$ direction of motion. The bird is turning right.
(f) $\vec{a}(t)=-\frac{3 \mathrm{~m}}{t^{2}} \hat{i}+\left(\frac{t^{6}}{s^{6}}\right)\left(35 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{j}$

Problem 4: (a) $\left(v_{0}\right)_{\text {min }}=D \sqrt{g / H}$
[LO 1.3, 1.4, 3.3, 3.4, 6.3, $6.4,9.3,14.2,14.3,15.3]$
(b) $t=\sqrt{2 H / g}$
(c) $d=(\sqrt{2}-1) D$
[LO 3.5, 6.5, 14.4]
[LO 1.5, 14.5]

