Phys 218 - Spring 2017
 All Sections

Physics 218 - Comprehensive

[Learning objective(s)]

Short Problems: A. (a) $a_{\|}(t)=3.0 \mathrm{~m} / \mathrm{s}^{2}$
(b) $a_{\perp}(t)=\left(0.09 \mathrm{~m} / \mathrm{s}^{4} t^{2}+\left(0.12 \mathrm{~m} / \mathrm{s}^{3} t+0.04 \mathrm{~m} / \mathrm{s}^{2}\right.\right.$
[17.1]
B. (a) None
(b) 9.8 J
C. (a) Both linear momentum and kinetic energy are conserved in
[48.1, 50.1] elastic collisions
(b) If the stick together, it must be a (completely) inelastic collision
D. (a) 6 m : not an equilibrium point;

10 m : a stable equilibrium point;
17 m : an unstable equilibrium point
(b) $x_{\max } \approx 16 \mathrm{~m}$ and $x_{\min } \approx 5 \mathrm{~m}$
E. (a) Any object undergoing SHM has $a=-\omega^{2} x$. With $F=m a \Rightarrow$
$F \propto-x$, so the force is restorative.
(b) $\omega=\sqrt{\frac{3}{C}} B$
(c) $x(t)=x_{\text {max }} \cos \left(\omega t+\phi_{0}\right)$, where $x_{\max }$ is the amplitude and ϕ_{0} is the phase offset

Problem 1: (a) $I_{\text {rod }}=1.0 \mathrm{~kg} \mathrm{~m}^{2}$
(b) $\alpha=10 \mathrm{rad} / \mathrm{s}^{2}$
(c) $\omega(t=2)=20 \mathrm{rad} / \mathrm{s}$
(d) $K_{\text {rot }}=200 \mathrm{~J}$
(e) It is not conserved because the motor is applying an external torque to the rod
Problem 2: (a)

(b) $n_{\text {feet }}=285 \mathrm{~N}$
$[3.1,21.1,31.1]$
(c) $x=0.58 \mathrm{~m}$
$[3.2,31.2,54.1,54.2]$
(d) $n_{\text {hands }}^{\prime}=423 \mathrm{~N}$
$[1.1,3.3,31.3]$
Problem 3: (a) The bullet stops in the block, so the collision is completely inelastic; kinetic energy is not conserved in these cases (there is friction which brings the bullet to rest)
(b) $v^{\prime}=\left(\frac{m}{M+m}\right) v$
$[57.1,57.2,59.1]$
(c) $h=\frac{1}{2 g}\left(\frac{m v}{M+m}\right)^{2}$
$[3.4,34.1,38.1,39.1]$

Problem 4: (a)

(b) $\alpha=\frac{-m g}{\left(m+\frac{2}{3} M\right) R}$
[3.5, 21.2, 51.2, 54.3, 55.2]
(c) $L=90 \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s}$
[54.4, 57.3]
Problem 5: (a) $a=5.05 \mathrm{~m} / \mathrm{s}^{2}$
(b) $T=8.33 \times 10^{3} \mathrm{~s}=2.31 \mathrm{hr}$
(c) $U=-3.14 \times 10^{10} \mathrm{~J}$
(d) $E=-1.57 \times 10^{10} \mathrm{~J}$
[21.3, 60.1]
[18.2, 19.1]
[61.1]
(e) It is bound because the total energy is less than zero

