## $\begin{array}{c} Phys \,\, 218 - Spring \,\, 2017 \\ {}_{\rm All \,\, Sections} \end{array}$

| Phy             | sics 218 - Comprehensive                                                                                                                                                               | [Learning objective(s)]                       |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| Short Problems: | A. (a) $a_{\parallel}(t) = 3.0 \text{ m/s}^2$<br>(b) $a_{\perp}(t) = (0.09 \text{ m/s}^4 t^2 + (0.12 \text{ m/s}^3 t + 0.04 \text{ m/s}^2)$                                            | [17.1]<br>[18.1]                              |
|                 | B. (a) None<br>(b) 9.8 J                                                                                                                                                               | [32.1]<br>[32.2]                              |
|                 | C. (a) Both linear momentum and kinetic energy are con-<br>elastic collisions                                                                                                          | nserved in [48.1, 50.1]                       |
|                 | (b) If the stick together, it must be a (completely) in                                                                                                                                | nelastic collision [50.2]                     |
|                 | <ul> <li>D. (a) 6 m: not an equilibrium point;</li> <li>10 m: a stable equilibrium point;</li> <li>17 m: an unstable equilibrium point</li> </ul>                                      | $[42.1] \\ [42.2] \\ [42.3] \\ [42.3]$        |
|                 | (b) $x_{\text{max}} \approx 16$ m and $x_{\text{min}} \approx 5$ m<br>E. (a) Any object undergoing SHM has $a = -\omega^2 x$ . Wi                                                      | $[43.1, 43.2]$ th $F = ma \Rightarrow [66.1]$ |
|                 | $F \propto -x$ , so the force is restorative.                                                                                                                                          |                                               |
|                 | (b) $\omega = \sqrt{\frac{3}{C}B}$<br>(c) $x(t) = x_{\max}\cos(\omega t + \phi_0)$ , where $x_{\max}$ is the amp                                                                       | [66.2] blitude and $\phi_0$ is the phase      |
|                 | (b) $w(v) = w_{\text{max}} \cos(\omega v + \phi_0)$ ; where $w_{\text{max}}$ is the tark offset                                                                                        | [66.3]                                        |
| Problem 1:      | (a) $I_{\rm rod} = 1.0 {\rm kg}{\rm m}^2$                                                                                                                                              | [51.1]                                        |
|                 | (b) $\alpha = 10 \text{ rad/s}^2$                                                                                                                                                      | [55.1]                                        |
|                 | (c) $\omega(t=2) = 20 \text{ rad/s}$                                                                                                                                                   | [14.1]                                        |
|                 | (d) $K_{\rm rot} = 200 \ {\rm J}$                                                                                                                                                      | [35.1]                                        |
|                 | (e) It is not conserved because the motor is applying a torque to the rod                                                                                                              | an external [58.1]                            |
| Problem 2:      | (a) nhands nfeet<br>mg                                                                                                                                                                 | [23.1, 26.1, 26.2]                            |
|                 | (b) $n_{\text{feet}} = 285 \text{ N}$                                                                                                                                                  | [3.1, 21.1, 31.1]                             |
|                 | (c) $x = 0.58 \text{ m}$                                                                                                                                                               | [3.2, 31.2, 54.1, 54.2]                       |
|                 | (d) $n'_{\text{hands}} = 423 \text{ N}$                                                                                                                                                | [1.1,  3.3,  31.3]                            |
| Problem 3:      | <ul><li>(a) The bullet stops in the block, so the collision is com-<br/>elastic; kinetic energy is not conserved in these case<br/>friction which brings the bullet to rest)</li></ul> |                                               |
|                 | (b) $v' = \left(\frac{m}{M+m}\right) v$                                                                                                                                                | [57.1, 57.2, 59.1]                            |
|                 | (c) $h = \frac{1}{2g} \left(\frac{mv}{M+m}\right)^2$                                                                                                                                   | [3.4,  34.1,  38.1,  39.1]                    |

