- 1. Solve for k: $U = \frac{1}{2}kx^2$
 - (a) $U \frac{1}{2}x^2$
 - (b) $2U x^2$
 - (c) $\frac{2x^2}{U}$
 - (d) $\frac{x^2}{2U}$
 - (e) $\frac{2U}{x^2}$
- 2. The value of y that satisfies $\frac{y}{3.2} = 14$ is
 - (a) 3.2
 - (b) -3.8
 - (c) 44.8
 - (d) 17.2
 - (e) 0
- 3. If 2x + 2y = 0 and 2x 2y = -4, then
 - (a) x = 0, y = -2
 - (b) x = -2, y = 2
 - (c) x = 0, y = 2
 - (d) x = -1, y = 1
 - (e) x = 2, y = -2
- 4. Solve for x: $\frac{M_1}{x^2} = \frac{M_2}{(d-x)^2}$

(a)
$$\frac{-2dM_1 \pm \sqrt{4dM_1^2 + 4(M_1 - M_2)M_1d^2}}{M_2 - M_1}$$

(b)
$$\frac{-2dM_1 \pm \sqrt{d^2M_1^2 + 4(M_1 - M_2)M_1d^2}}{M_2 - M_1}$$

(c)
$$\frac{-dM_1 \pm d\sqrt{M_1 M_2}}{M_2 - M_1}$$

(d)
$$\frac{-2dM_1 \pm \sqrt{2d^2M_1^2 + 4(M_1 - M_2)M_1d^2}}{-2(M_1 + M_2)}$$

(e)
$$\frac{-(2dM_1 \pm d\sqrt{M_1M_2})}{M_1 - M_2}$$

5. In the right-angled triangle shown, which is true? There may be more than one correct answer, but choose only one:

- (a) $\sin^{-1}(c/a) = \theta$
- (b) $\sin^{-1}(a/c) = \theta$
- (c) $\sin^{-1}(b/c) = \phi$
- (d) $\sin^{-1}(a/c) = \phi$
- (e) $\sin^{-1}(b/c) = \theta$

6. In the diagram below, $\theta = 30.0^{\circ}$ and the vector \vec{F} is 20.0 units long. Given that $\cos 30^{\circ} = \sqrt{3}/2 \approx 0.866$ and $\sin 30^{\circ} = 1/2$, this means that (there may be more than one correct answer, but choose only one):

- (a) F_x is 10.0 units long
- (b) F_y is 34.6 units long
- (c) F_x is 8.7 units long
- (d) F_y is 17.3 units long
- (e) F_y is 11.5 units long
- 7. $\frac{21(x+y^3)}{7xy}$ reduces to
 - (a) $3xy^2$
 - (b) $3(1+y^2)$
 - (c) $\frac{3(x+y^2)}{x}$
 - (d) 3(x+y)
 - (e) $\frac{3(x+y^3)}{xy}$
- 8. $\frac{1}{4} + \frac{3}{5} = ?$
 - (a) 3/9
 - (b) 3/20
 - (c) 5/12
 - (d) 17/20
- 9. If A is greater than B, and B is less than C, then we can say that:
 - (a) A is greater than C
 - (b) A is necessarily equal to C
 - (c) A is smaller than C
 - (d) there is not enough information to determine a relationship between A and C
 - (e) A is not necessarily equal to C
- 10. If F = mg and m and g are constants, then the definite integral $\int_0^h F dy$ is equal to
 - (a) $\frac{1}{2}(mgh)^2$
 - (b) *mgy*
 - (c) *mgh*
 - (d) $\frac{1}{2}(mg)^2$
 - (e) mgh + C