The derivative can be defined in terms of a limit. For a function $f(t)$ that depends on the variable t, the derivative is $f^{\prime}(t)=\frac{d f}{d t}=\lim _{\Delta t \rightarrow 0} \frac{\Delta f}{\Delta t}$. This corresponds to finding the tangent to the curve at the point t. In practice, for a polynomial, the derivative can be found using the following formula: if $f(t)=a_{-2} t^{-2}+a_{-1} t^{-1}+a_{0} t^{0}+a_{1} t^{1}+a_{2} t^{2}+a_{3} t^{3}+\ldots+a_{n} t^{n}$ where the a_{i} and n are constants, then $f^{\prime}(t)=\frac{-2 a_{-2}}{t^{3}}-\frac{a_{-1}}{t^{2}}+0+a_{1}+2 a_{2} t+3 a_{3} t^{2}+\ldots+n a_{n} t^{n-1}$. Recall that $1 / t^{n}=t^{-n}, t^{0}=1$ and $t^{1}=t$.
The "chain rule" says that if a function f depends on g which itself depends on the variable x, i.e. $f(g(x))$, then the derivative of f with respect to x is $\frac{d f}{d x}=\left(\frac{d f}{d g}\right)\left(\frac{d g}{d x}\right)$. For example, if $f=2 g^{2}$ and $g=x+3 x^{2}$, then $d f / d x=(4 g) \frac{d g}{d x}=\left(4\left[x+3 x^{2}\right]\right)(1+6 x)$.

1. Find the derivative of $y=5+6 x$
2. Find the derivative of $f(t)=10 t^{10}$
3. Find the derivative of $f(x)=3 x^{3}-9 x+1$
4. Find the derivative of $y=3 t^{3}-12 t^{2}+23 t$
5. Find the derivative of $f(t)=2 t^{9}-5 t^{-9}+9 t$
6. Find the derivative of $z=2 y^{-6}-4 y^{-4}+6 y^{-2}+8$
7. Find the derivative of $y=2 \sqrt{x}+3 \sqrt[3]{x}-4 \sqrt[4]{x}$
8. Find the derivative of $f(x)=2 x^{3 / 5}-4 x^{7 / 4}+3 x^{8 / 3}-8$
9. Find the derivative of $f(t)=\frac{1}{t}-\frac{1}{t^{3}}+\frac{1}{t^{5}}$
10. Find the derivative of $g(z)=\frac{2}{z^{3}}\left(1+\frac{1}{2 z^{2}}-\frac{3}{z^{4}}\right)$
11. Find the derivative of $y=x^{2}\left(5 x^{2}-2\right)$
12. Find the derivative of $y=(2 t-3)\left(3 t+2 t^{2}\right)$
13. Find the derivative of $f(x)=\frac{4-7 x+8 x^{3}}{x}$
14. Find the derivative of $r(t)=\frac{5 t^{5}-t^{3}+4 t}{t^{3}}$
15. Find where (if anywhere) the function $v(t)=\frac{1}{3} t^{3}+t^{2}-15 t+2200$ isn't instantaneously changing
16. Find where (if anywhere) the function $a(t)=t^{5}-2 t^{4}-5 t^{3}$ isn't instantaneously changing
17. Determine where the function $f(x)=600-40 x^{3}-5 x^{4}+4 x^{5}$ is increasing and decreasing.
18. Determine where the function $f(x)=(x+3)(x-1)^{2}$ is increasing and decreasing.
19. Determine where, if anywhere, the tangent line to $f(x)=\frac{1}{3} x^{3}-x^{2}+3 x$ is parallel to the line $y=2 x+\frac{1}{2}$.
20. Determine where, if anywhere, the tangent line to $v(t)=3 / t-t / 3$ is parallel to the line $\omega(t)=9-t / 2$
