Chapter 10 - Continued \& Chapter 11 - Static Equilibrium

Physics 206

Group 1 Problems:

Problem 1:
(a) $\tau=\frac{\ell}{2} M g \sin (90)$
(b) $\omega=\sqrt{\frac{M g \ell}{I}}$
(c) $L=\sqrt{M g I \ell}$

Problem 2:

$$
\begin{aligned}
R & =\left(\frac{m R_{0}^{2} v_{0}^{2}}{F_{T}}\right)^{1 / 3} \\
R & =0.354 \mathrm{~m}
\end{aligned}
$$

Problem 3:

$$
\text { (a) } \omega=\frac{6 v}{19 \ell}
$$

(b) Ratio $=\frac{3}{19}$

Group 2 Problems:
Problem 4:

$$
h_{f}=\frac{9 m^{2}}{(6 m+M)^{2}} h
$$

Problem 5:
(a) and (b) $\omega_{f}=\frac{M \ell^{2}+24 m x^{2}}{M \ell^{2}+6 m \ell^{2}} \omega$

Problem 6:

(b) $F_{N}=\left(\frac{M}{2}+\frac{3 m}{4}\right) g \cot \theta$
(c) $F_{N}=(M+m) g$

$$
\mu=\frac{\frac{M}{2}+\frac{3 m}{4}}{M+m} \cot \theta
$$

Group 3 Problems:
Problem 7:
(a) $F_{B}=2 m g$
$F_{B}=1.47 \mathrm{~N}$
$F_{C}=\frac{m g R}{2 R \cos \theta}$
$F_{C}=0.424 \mathrm{~N}$
$F_{A}=F_{C}$
(b) $F_{N}=\frac{F_{C}}{\sin \theta}$
$F_{N}=0.848 \mathrm{~N}$
Problem 8:
(a) $F_{T}=525 \mathrm{~N}$
(b) $F_{y}=328 \mathrm{~N}$ $F_{x}=222 \mathrm{~N}$
(c) $\mu=1.48$

